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Motivation ﬂ(IT
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Bring/mejthe gre/er‘{ :éljp‘;:
fromithe; sid/eboard ’

A humanoid robot designed for grasping of objects in a real-world scenario sets high
requirements on visual object recognition and pose estimation
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Motivation

@ Whatis the problem?

@ High dimensional visual information from cameras
has to be transferred to a high-level description
language

® What is an object?
® What is the pose of the object?
@ Objects have to be recognized in an arbitrary scene
® Invariance regarding light conditions
® Rotation
® Scaling
B Affine transformation

B Reasonable time
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Motivation — PoseCNN A\‘(IT
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PoseCNN: A Convolutional Neural Network
'or 6D Object Pose Estimation in Cluttered Scenes

Yu Xiang!?, Tanner Schmidt?
Venkatraman Narayanan?, Dieter Fox!-2

INVIDIA Research
2University of Washington
3Carnegie Mellon University
RSS 2018
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https://arxiv.org/abs/1711.00199
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Motivation — Dense Fusion A\‘(IT
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~ Testing Results on YCB_Video Dataset ;
(using the same segmentation masks released by PoseCNN)

PointFusion (0.05s per frame) PoseCNN+ICP (10.6s per frame) DenseFusion (0.06s per frame)

&>
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Motivation — DenseFusion for Grasping
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Robot view
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Motivation — Region-based Object Tracking

pose estimation result RGB input
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Feature Extraction

@ Image processing operations
® Input: one or several images
® Output: image

W Feature extraction
® [nput: Image
® OQutput: one or several image features (scalars or “short” vectors)
® Examples of image features
® 6D pose of an object
® Parameter of a line
® Classes of features
B Region features (redness)
B Line features (doors, buildings, roads)
B Interest points, salient points, corner points (point features)
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Outline A\‘(IT
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@ Correlation Functions
® Corner Detectors

® Moravec operator

B Harris Corner detector

® Good Features to Track

B Machine-learned features
@ Feature Descriptors

® Simple descriptors

| SIFT
® SURF
® MSER

@ Pose Estimation
® Monocular
B Stereo images
B Depth images
® Neural networks

&>
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Correlation Methods A\‘(IT
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B Determine correspondences between images or image patches I; and [,

® Used for:
® Solving of correspondence problem in stereo vision

W Object recognition See lecture Robotics-|
® Image-based localization

B Non-normalized correlation functions
® Change depending on the illumination

® Normalized correlation functions
® Invariant with respect to constant additive or multiplicative brightness differences

® Inthe following we will consider squared grayscale images

&>
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Non-normalized Correlation Functions A\‘(IT
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® Non-normalized correlations functions for two square grayscale images I; and [,

n-1n-1

c(I, ;) = Z Z fU(w,v), I(u,v))

u=0 v=0

® Correlation-function ¢ for images 14, I, at position (uy, vy) with displacement (d,, d,) in a
squared window of size k X k:

kK k
c(Iy, I3, ug, vo, dy, dyy) = z z fUi(ug +u, vy +v), I (ug +dy + u,vg +d, +v))

u=—-kv=-k

@ Function f(+) is determined by the correlation method

&>
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Non-normalized Correlation Functions Ii A\‘(IT

Karlsruher Institut far Technologie

® Sum of Squared Differences (SSD):  f(x,y) = (x — y)?
SSD(1y,I,) = Z Z (I (u,v) = L (u, v))?
u v

B Squared Euclidean metric; not robust with respect to outliers, not invariant to different brightness

® Sum of Absolute Differences (SAD): f(x,y) =|x —y|

SAD(Iy,I,) = Zuzvlh(u, v) = LW v)]

® Manhattan-metric; more robust with respect to outliers; not invariant to different brightness

&>
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Normalized Correlation Functions A\‘(IT
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® Extension to compensate additive constant brightness level shift d:
LL(w,v) +d=1W,v)

® Normalization:

® Arithmetic mean of an image | 1
[ = ﬁz z I(u,v)
u %

B Subtraction of mean-value (“zero-mean” normalization)

, _ 1
L=l @v) = =L -— > > L)
u v

n2
u

1 _ ,
=L(uv)+d — —ZZIl(u,v)+d =Lwv)-L =1
v

® Robust against constant brightness offset

&>
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Normalization A\‘(IT
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@ Normalized correlations functions to compensate multiplicative brightness level
shift

L(u,v) -r=1(uv)

® Normalisation
® Frobenius norm:

s = > ) 12(wv)

® Normalization by Frobenius norm
I, _Lwy) I, (u,v) _ Ii(uv)-r _ 11 (u,v) _ L(uwy) I’
2 g Jzu s 2y VEuei @) T Iy hwe) il 1

&>
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Normalized Correlation Functions

@ Forbenius norm of additive normalized image:

11l = JZ > (v -1y
@ Example

® Zero-Mean Normalized Sum of Squared Differences (ZNSSD)

11llm 121l

T T 12
ZNSSD(I,1,) = z z lll(u, 1,;) -, L 1’7) — 12]

W Zero-Mean Normalized Sum of Absolute Differences (ZNSAD)

ZNSAD(I, I,) = 22 Lwv) -1 Lwv)-h

!/
115 121l
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Outline A\‘(IT
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@ Correlation Functions
@ Corner Detectors

® Moravec operator

® Harris Corner Detector

® Good Features to Track

B Machine-learned Features
@ Feature Descriptors

® Simple Descriptors

| SIFT
® SURF
® MSER

@ Pose Estimation
® Monocular
B Stereo Images
® Depth Images
B Neural Networks

&>
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Moravec Operator ﬂ(IT
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B Developed 1977 by Hans P. Moravec

B Goal:

® Recognize regions of interest in consecutive
camera-images

B Interest Points concept

® Aninterest point is defined as a point where a
sliding window filter has strong variations
when moved in any direction

http://www.roborealm.com/help/Moravec.php

B Use of autocorrelation-function
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Moravec Operator (llI) — Steps A\‘(IT
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@ Focus area is a small quadratic window (e.g. 3 X 3or5 X 5)and
a point (u, v) in the centre

® Window is moved in four pre-defined directions (horizontal, vertical, diagonal)
and compared with basis value

B Difference between original and moving window is calculated with SSD (Sum of
Squared Differences):

D(u,v,s,t) = z (I(u; + s,v; +t) — I(uy, v;))?
(uj,vy)) eEW(u,v)

W (u, v) is the quadratic window with centre (u, v)

(S; t) € {(1;0); (0,1), (1)1)1 (_1;1)}
18 Robotics Il — Sensors and Perception| Chapter 5 H?T
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Moravec Operator (lll) — Possible cases

B Case 1: Value of D is for all translations low
- test window is in a (nearly) homogenous area

B Case 2: Value of D along a certain direction R is low,
for translation orthogonal to R the value is high
—> test window contains an edge along R

B Case 3: Value of D for a translation in any direction is high
- test window contains a corner (Interest Point)
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Moravec Operator IV - Algorithm A\‘(IT

Karlsruher Institut far Technologie

B The test window is shifted over the entire image

@ The metric has to return low values in case 1 and 2 and high values in case 3
(corner)

® Input: grayscale image I(u, v), threshold k

B Output: Set M of calculated interest points
M: =g
for all pixels (u, v) in 1 do
m :=inf.
for all (s, t) in Sdo
m :=min {m, D(x, Y, s, t)}

if m > k then
M: =M u{(u, v)}
return M

&>
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Moravec Operator V - Disadvantages A\‘(IT

Karlsruher Institut fur Technologie

® Non-isotropic operator response:

® Result of the Moravec operator depends on the shift-direction
® Since only four directions are tested the result cannot be
invariant to rotation

® Noisy operator response

® The window is binary and quadratic
® Pixels located in the corner have the same weight,
which may cause error

Typical Moravec operator result:
Finds points on corners and noisy edges

B Strong response to a point on an edge:

® Operator is sensitive to corner points, that have a slight
deviation to the predefined shift-directions

&>
21 Robotics Il — Sensors and Perception| Chapter 5 H 2T



Harris Corner Detector ﬂ(“'

Karlsruher Institut far Technologie

B Developedin 1988 by
Chris Harris and Mike Stephens

B Goal: Replace the four predefined
directions in the Moravec operator with
smaller step size

B Approach: Use first order Taylor series of
the image function

Peter Corke: Robotics, Vision and Control, Fundamental Algorithms
in MATLAB®, Springer 2011

n 3
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Harris Corner Detector Il A\‘(IT
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B Image function is approximated with Taylor expansion
B First order Taylor series:

I(u+s,v+t) =I(uv)+ (Ix(ur v) L, v)) ' (i)

I, and I, are directional derivatives, which can be calculated with
Prewitt- or Sobel operator.

&>
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Harris Corner Detector Il A\‘(IT
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W Use of Taylor function for D(u, v, s, t) (Moravec-Operator) results in:
D(u,v,s,t) = Z(I(ui +s,v; + t) — I(u;,v;))?
2
~ > (1w + e v Ly v) - (7) = 1 v)

- Z ((Ix(uirvi) Iy (uy,v1) - (i))z

B IZ (i, vp) LeQui, vi) - Iy (U, i)\ s
- Z ((S 2 <Ix(ui'vi) Ly (ug, vy) I3 (u;, v;) > | (t)>

Image structure tensor

Z IZ (ug, v;) Z L (uy, v)ly (uy, vy)

=G 0-Mwv) () M(uv) =
z L (uy, vp) Ly (g, vy) Z I3 (ug, v;)

&>
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Harris Corner Detector IV &l(IT
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® The image structure tensor M(u, v) is a 2 x 2 matrix computed from image derivatives
B [t corresponds to an approximation of the local auto-correlation function

Flat region Edge Corner

® Eigenvalues 1, and A,0f M give information about distribution of gradients
B Flatregion: A; and A4, small; Contour lines are a large ellipse
B Edgeregion: A; > A, or vice versa; stretched ellipse
B Corner region: 1; and A, large; small ellipse

&>
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Recap: Eigenvalue & Eigenvector A\‘(IT
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B Eigenvectors x with Eigenvalues A are defined as:
A-x =1-x

B Values can be computed by solving
det(A —Al) =0
® For M(u,v) the solution is given by
Ay = %[(mn + Myy) £ /4myamy + (My; — myy)?]

® The values of 1, and x4 indicate the amplitude and direction of the
largest/smallest change in D(u, v, s, t)

&>
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Eigenvalues on Corners A\‘(IT
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B For corners, the interesting value is A_
® Large value indicates that the gradient is large in any direction
B Therefore, it must be a corner

&>
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Harris Corner Detector V

B Regions in A;4,-space give corner/edge/flat classification:

iso-response contours

UK=L S

amplitude of response function

» o

Harris, Chris, and Mike Stephens. "A combined corner and edge detector.”
Alvey vision conference. Vol. 15. No. 50. 1988.
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Harris Corner Detector VI A\‘(IT
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W Eigenvalue decomposition has expensive computation
B Alternative measure of corner response proposed by Harris/Stephens:

C(u,v) = 111, — k(A + 13)?
= detM(u,v) — K(trace M (u, v))2
= My Myy — MMy — k(Mg + Myy)°

W kis determined empirically and usually in the range between 0.04 and 0.15

@ No eigenvalue decomposition of M; instead, evaluate the determinant and trace
of the M

&>
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Harris Corner Detector VI

B Corners are assigned when local maxima are found

® Harris Corner Response for k = 0.04:

25 Harris-Cornerness

Robotics Il — Sensors and Perception| Chapter 5
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Harris Corner Detector VIlI ﬂ(IT

Karlsruher Institut fur Technologie

B Example: Harris Corner Detector solves the problems of Moravec Operator

Moravec Corner Harris Corner

A
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Harris Corner Detector IX A\‘(IT
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B Example on real image with OpenCV in Python:

img = cvZ.imread(filename)
gray = np.float32(cv2.cvtColor (img,cvZ2.COLOR BGR2ZGRAY) )
dst = cv2.cornerHarris(gray,2,3,0.04)

Values above threshold colored red:

Result of cornerness function

img[dst>0.02*dst.max () ]=[0,0,255]

32 Robotics Il — Sensors and Perception| Chapter 5



Good Features To Track A\‘(IT
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Corners are more
B Developed in 1994 by Jianbo Shi and Carlo stable for tracking

Tomasi reclls [
@ Improved version of Harris Corner Detector , -
B Eigenvalues are calculated explicitly S B : ) )
® Condition for feature: | v
min(Ay, Ay) > A WXy 5 . |
Both eigenvalues have to be above a threshold .- Y _JjoemiZ] T3

instead of threshold for cornerness function of
Harris (similar to Moravec)

Shi, Jianbo. "Good features to track." Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer
Society Conference on. IEEE, 1994.

<D
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Machine-learned Features (1) A\‘(IT
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® Until recently features were chosen by experts
® Use of convolution and machine-learned filters for feature extraction:

Convolutional Neural Networks (CNNs)

@ Training of CNNs
® Given image (input) and correct label/classification (output)
W Backpropagation with loss function (compare actual output with correct output)

&>
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Machine-learned Features (2)

® Stack of multiple layers

35 Robotics Il — Sensors and Perception| Chapter 5
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https://www.researchgate.net/publication/353545214_MSF-Net_Multi-Scale_Feature_Learning_Network_for_Classification_of_Surface_Defects_of_Multifarious_Sizes

Machine-learned Features ﬂ(IT
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B Stack of multiple layers: Hierarchically concatenated features

Low-Level » Mid-Level Ll High-Level Trainable
Feature Feature Feature Classifier
A D

© RSIP https://www.rsipvision.com/exploring-deep-learning, 2020
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https://www.rsipvision.com/exploring-deep-learning

Outline A\‘(IT
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@ Correlation Functions
® Corner Detectors

® Moravec operator

® Harris Corner Detector

® Good Features to Track

B Machine-learned Features
@ Feature Descriptors

® Simple Descriptors

| SIFT
® SURF
® MSER

@ Pose Estimation
® Monocular
B Stereo Images
® Depth Images
B Neural Networks

&>
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Feature Descriptors A\‘(IT
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B To identify correspondences between extracted features in images (e.g., for

object detection, pose estimation, etc.) a unique description for a feature is
required

@ Feature Detector:
® Algorithm that detected locations of Points of Interest in an image
B Feature Descriptor

® Algorithm that provides a feature vector (descriptor) of Points of Interest in an
image

® Descriptors represent “numerical fingerprints” of the features

&>
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Simple Descriptors A\‘(IT
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B Most simple approach:

B Description of a local feature as the quadratic window around the feature
centre (key point = image section)

B Matching of 2 features with correlation function

® Pros:

® Easy to implement
® Low computational cost

® Cons:

® Not invariant to changes in scale or rotation
® Memory inefficient (resource limited systems)

&>
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Simple Descriptors Il A\‘(IT
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@ Robust and compact description of key points by Lepetit et al. 2004
® Description of image section by view set
B Generation of synthetic views of key points by random affine transformations

Ad . b

® lllumination changes handled by normalizing of intensities of all patches
B Same minimal and maximal value in all patches = improved contrast

® High memory demand (multiple descriptors for each feature)

® Large computational effort (many descriptors to compare)

&>
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Scale Invariant Feature Transform (SIFT) — | A\‘(IT
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B Detected features might change if the image is rotated or scaled
® Example: Harris Corner Detector is invariant to rotation but not to scaling

&

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html

W SIFT detects keypoints that are invariant to orientation and scale

@ Approach:
1. Scale-space extrema detection

2. Keypoint localization

. . . Lowe, David G., Distinctive Image Features from Scale-Invariant
3. Orientation assignment Keypoints, JCV 2004
4

Keypoint descriptor

&>
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Scale Invariant Feature Transform (SIFT) A\‘(IT
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B Developed in 1999 by David G. Lowe, refined in 2004; very popular

@ Approach (overview):

@ Find interest points using the SIFT detector:
* Filter image with difference of Gaussian (DoG) kernels
 Stack the filtered images and identify extrema (Gaussian pyramid)
* Find best candidates

@ Calculate SIFT descriptor
* Divide region into cells, calculate gradient orientations
* Generate histograms

&>
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Scale Invariant Feature Transform (SIFT) A\‘(IT
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B Regions around a feature point are characterized partially invariant to
rotation and scaling in a certain range

B Invariant to intensity and contrast changes and small geometric
deformations

B Algorithm

Scale-space extrema detection
Keypoint localization
Orientation assighment

W N e

Keypoint descriptor

&>
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Scale-Space Extrema Detection A\‘(IT
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Create Gaussian pyramid: Scale space of an image /(u,v) as convolution with a

variable-scale Gaussian (= blurred images)
Gaussian Kernel:

1 (1242 2
L(u, v, G) = G(u, v, G) * ](u, U) G(u,v,o0) = 27'[0-28 (u?+v?)/20

Keypoints are scale-space extrema in Difference-of-Gaussian (DoG) space convolved
with the image (two scales separated by factor k):

D(u,v,0) = (G(u,v, ko) — G(u,v,0)) *I1(u,v)
= L(u,v,ko) — L(x,y,0)

DoG is a more efficient approximation of scale normalized LoG-Operator (Laplacian of
Gaussian)

&>
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Scale-Space Extrema Detection A\‘(IT
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® Construction of D(x, y, 6): The initial image is incrementally convolved with
Gaussians to produce images separated by a constant factor k in scale space,
shown stacked in the left column

V=
Scale ﬁ?—: ?@
(next
octave) ﬁg = » ==
G =24/s s is number of images
per octave (here s = 5)
o =23/5

Scale
(first
(e} =22/S octave)

G =21/5 Each octave’s image size
= z is half of the previous
c =1 Difference of one.
Gaussian Gaussian (DOG)

&>
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SIFT - Keypoint Localization

B Detect local extrema in scale space:

® Each sample point is compared to its 26
neighbors (8 neighbors in the current image
and 9 neighbors each in the scales above and
below)

B A pointis selected as local extrema only if it is
larger than all of these neighbors or smaller
than all of them

B For each extrema (max or min) found, output is
the location and the scale

B Extrema can be localized with sub-voxel
accuracy using the using a Taylor-Series
expansion of D(x,y, o)

46 Robotics Ill — Sensors and Perception| Chapter 5

SKIT

Karlsruher Institut fur Technologie

s L L L L LS
e prd

L Z s

Z LS

ST
Scale T e
S STE T
///a/a/a//
LT
T T T T 77
ST
ST A AT




Orientation Assighment ﬂ(IT
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B Detected keypoints are connected to the scale at which they were found 2>
scale invariance

B Rotation invariance is obtained by assigning an orientation to each keypoint

B Idea:

® Calculate gradients in DoG of the keypoint

® Assign dominant gradient orientation to
keypoint

Akeypoint

47 Robotics Ill — Sensors and Perception| Chapter 5 . HﬁT
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Orientation Assignment A\‘(IT
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Calculation of dominant gradient orientations:
B Step 1: Calculate gradients in horizontal and vertical T ] g
directions in quadratic 16x16 pixel window (Gauss-weighted) ‘

B Step 2: Calculate gradient orientation 6 and amplitude m:

Gaussian blurred image Gradient

g on’entau'onsh :‘:' .
m = /g,zc +g9; 0= arctang—i’ .

B Step 3: Calculate a histogram of gradients
® Quantized into 10° steps (36 bins)

® Amount added to the histogram is proportional to m

B Step 4: Search for global maximum
B All values within 80% of the maximum value are valid F[ M

orientations T ez

AR A T e

&>
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Keypoint Descriptor A\‘(IT
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W So far, each keypoint has a location, scale, orientation.

® Now: compute a descriptor for the local image region of each keypoint that is highly
distinctive and invariant as possible to variations such as changes in viewpoint and
illumination.

® Example with 8x8 region divided into 4 cells

11
// M ] \\
/. YN 71

Gaussian window L1 71T 5

N

— —--P_, — ey >

A AN e ‘ E ; l :

" | He = «/
Image gradients Keypoint descriptor

&>
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Harris Corner Detector vs. SIFT key point Detector ﬂ(IT
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el

Harris SIFT

n 3
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Major advantages of SIFT A\‘(IT
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B Locality: features are local, so robust to occlusion and clutter (no prior
segmentation)

B Distinctiveness: individual features can be matched to a large database of
objects

Quantity: many features can be generated for even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to a wide range of different feature
types, with each adding robustness

&>
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Use of SIFT

Object recognition

Motion tracking

Stereo calibration

Image indexing and retrieval
Robot navigation

Robotics Il — Sensors and Perception| Chapter 5
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Speeded Up Robust Features (SURF) A\‘(IT
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® Designed as an efficient alternative to SIFT Features
B Detection stage relies on simple 2D box filters instead of ideal Gaussian derivatives

B Convolutions with box filters can be easily calculated with integral images (sum of pixel
values in a given image)

® Calculations in parallel for different scales

EEEEEE ]

0l i3 I i Juil
Left to right: Gaussian second order derivatives (with ¢ = 1.2) in y-, xy-direction and their
approximations in the same directions, respectively.

&>
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Maximally Stable Extremal Regions (MSER) A\‘(IT
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B Region detection algorithm developed in 2002 by Jiri Matas et al.

B Detected regions should be invariant under:
® lllumination changes
B Affine Transformations (Rotation, Translation, Scaling, Reflection, Shear)

B Maximally Stable Extremal Regions are defined solely by the intensities of an
image
® Find regions that remain consistent over a wide range of intensity thresholds
® Take the most stable version of a consistent region

&>
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Maximally Stable Extremal Regions (MSER) - Il

B Create all possible thresholded versions of a gray-scale image
® Each pixel above threshold is set to “white” and each pixel below is set to “black”

L(xy) = { 2(;5 g,l((;c' )<t
y) >t
Find connected areas for each thresholding level
® Create a list of all connected components and their size for a given threshold value
B The region at threshold t¢;qp1e With the minimum rate of change of its area is taken as
the Maximally Stable Extremal Region

Detected Regions

H2T

t =50 100
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Maximally Stable Extremal Regions (MSER) - IlI

https://www.youtube.com/watch?v=6d6V5aWUynl
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Maximally Stable Extremal Regions (MSER) - Il ﬂ(IT

Karlsruher Institut fur Technologie

B Example: Detected MSER regions

A
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Efficient Point Features

@ Combination of corner detector and descriptor

B Expensive scale space analysis is avoided

B Scale-independency is reached by computing features at several
predefined spatial scales explicitly

B Allows real-time image processing (30 fps and more)

W Examples:
B FAST Detector + SIFT/Ferns-Descriptor: (Wagner et al., 2008)

® Harris Corner detector + SIFT-descriptor: (Azad et al., 2009)

Azad, P., Asfour, T. and Dillmann, R., Combining Harris Interest Points and the SIFT Descriptor for Fast Scale-Invariant Object
Recognition, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4275-4280, October, 2009

&>
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Object Detection with Feature Descriptors A\‘(IT

Karlsruher Institut far Technologie

B Feature descriptors can be used to efficiently detect objects and estimate
their location

B Approach:
® Extract feature descriptors of image

® Identify correspondences between image features and object features:
@ Brute Force
B Nearest Neighbors
B RANSAC

B Filter the matches and calculate the transformation

&>
60 Robotics Il — Sensors and Perception| Chapter 5 H 2T



61

Object Detection with Feature Descriptors Il

Robotics Il — Sensors and Perception| Chapter 5

KIT

Karlsruher Institut fur Technologie

Unfiltered
Correspondences
(tolerant threshold for
matching)

Filtered correspondences

| with RANSAC and

determination of
homography

+ Result of 2D-localization
(blue box left side)

~ Het




Outline A\‘(IT

Karlsruher Institut fur Technologie

@ Correlation Functions
® Corner Detectors

® Moravec operator

® Harris Corner Detector

® Good Features to Track

B Machine-learned Features
@ Feature Descriptors

® Simple Descriptors

| SIFT
® SURF
® MSER

B Pose Estimation

® Monocular
Stereo Images
Depth Images
Neural Networks

&>
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6D Pose Estimation A\‘(IT

Karlsruher Institut far Technologie

@ Grasping requires knowledge of the object pose
® Where to grasp?
® Which grasp to choose?

@ Grasps can be precomputed on object meshes
@ But: Execution of the grasp requires 6D pose of the object in the scene

Ri1 Riz Rz 44
Ry1 Ry Ry
R3; Rz R33 t3

0 0 0 1

&>
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6D Pose Estimation A\‘(IT

Karlsruher Institut far Technologie

B Problem definition:
® Givenis a 3D model of the object

B Task: Find the transformation (rotation and translation) which determines the 6D
pose of the Object coordinate system (model) in World coordinate system

B In the following: World coordinate system = Coordinate system of (left)
camera

B Different approaches depending on the camera system used:
® Monocular: 2D-3D point correspondences
B Stereo: 3D-points from stereo triangulation

® Depth: point clouds

&>
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Monocular Pose Estimation - | A\‘(IT

Karlsruher Institut far Technologie

@ Basics:

@ 2D-3D point correspondences
® 3D points of the model (world coordinate system)
® 2D points from current view (image coordinates)

B Compute homography of 2D-3D point correspondences and use it for
tracking of 2D-Points, e.g. with Kanade-Lucas-Tomasi Tracker (KLT-
Tracker)

&>
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Monocular Pose Estimation - Il A\‘(IT
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B Algorithms for 6D pose estimation from 2D-3D point correspondences
(called Perspective n-Point, PnP problem)

B POSIT (Pose from Orthography and Scaling with Iterations)
® Published in 1992 by Daniel F. DeMenthon and Larry S. Davis
® In original version: 3D points are not allowed to be co-planar
W Extended for co-planar 3D points: (Oberkampf et al., 1996)

® Further Algorithms
® (Luetal., 2000)
® (Schweighofer and Pinz, 2006)
® (Moreno-Noguer et al., 2007)
® (Schweighofer and Pinz, 2008)

&>
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Monocular Pose Tracking using Color Histograms A\‘(IT
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B Once the initial object pose is known, tracking of the object becomes feasible

® Temporally Consistent Local Color histograms (TCLC-Histograms) are computed for the initial pose
® Change of 6D-Pose is calculated for each new frame

Real-Time Monocular Pose Estimation of 3D Objects using
Temporally Consistent Local Color Histograms

Henning Tjaden', Ulrich Schwanecke' and Elmar Schémer?

ICCV 2017, Venice

*_ (ICVMR

H. Tjaden, U. Schwanecke and E. Schomer, "Real-Time Monocular Pose Estimation of 3D Objects Using Temporally Consistent
Local Color Histograms," 2017 IEEE International Conference on Computer Vision (ICCV)

&>
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Monocular Pose Estimation: SimTrack A\‘(IT
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Detection and tracking of multiple objects

POSE TRACKING \I

B “Simulated” scene model “» e §

® Object models, current pose hypotheses [

® Used to render images of current model | ﬁ -,
B Detection based on SIFT-features & PnP R '0
® Tracking based on Augmented Reality flow = —»II—»IJ

® Optical flow between AR image and camera image
® AR image = objects rendered onto camera image

B Selection between detection and tracking pose candidates
® Reliability measure based on proportion of valid AR flow

K. Pauwels and D. Kragic, "SimTrack: A simulation-based framework for scalable real-time object pose detection and tracking," 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 1300-1307.
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Monocular Pose Estimation: SimTrack @ H2T ﬂ(IT
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Stereo-based Pose Estimation A\‘(IT
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B Multiple approaches exist, one possible solution:
B Computation of 3D coordinates for feature points using correlation and
stereo triangulation followed by:
W Fitting of a geometric 3D primitive
W Registration of a 3D object model

@ Advantages:

B Robust, since stereo triangulation is used

B Better accuracy (especially depth), depending on setup
@ Disadvantages:

W Stereo calibration is needed

® [naccuracy with strong lens distortion

&>
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Example: Stereo-based Pose Estimation @ H2T
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Pose Estimation on Depth Images A\‘(IT
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B Pose Estimation in 6D space is a challenging problem

B RGB-D Sensors naturally produce 3D data in the form of Point Clouds
® No need to solve the hard 2D-3D problem

@ BUT: Point Clouds are unordered (unlike 2D images)

® Convolutions that were used to calculate features in 2D images
cannot be easily applied

® Neighborhoods need to be computed and are not implicitly defined
® Learning methods (e.g. Neural Networks) have a hard time with unordered sets

&>
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Pose Estimation on Depth Images — ICP A\‘(IT

Karlsruher Institut far Technologie

B Iterative Closest Point (ICP)

Iterative transformation of a point cloud to best match the reference (the object)
Can be used to align 3D models of objects
Works with incomplete data (e.g., from occlusions)

Algorithm: (see Robotics I)
® For each point in the point cloud find the closest point in the reference set
B Estimate the transformation that minimizes the distances of all correspondences

® Transform the point cloud and iterate until a certain accuracy or the maximum number of
iterations is reached

Local minimum: in case of complex object geometries
The higher the required accuracy, the higher is the runtime of the algorithm
Prone to errors for data with outliers

&>
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Pose Estimation on Depth Images — RANSAC A\‘(IT

@ RANdom SAmple Consensus (RANSAC)
B Iterative method to estimate parameters of a

model from data

® Works with incomplete data and is robust

against outliers
® Algorithm:

® Randomly sample subset from input data
B Fit the model to best resemble the subset

® Find the points in the input data that are
closer than threshold to the model; those are
called the consensus set

B Repeat until the consensus set is large enough
or a maximum number of iterations is reached
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Pose Estimation using Neural Networks

SKIT

Karlsruher Institut fur Technologie

B Challenges: training, camera dependent, inherent ambiguity with symmetries
- Pose estimation is (still) dominated by classical methods

Methods based on point pair features, Template matching methods,
Learning-based methods, Methods based on 3D local features

# Method LM LM-O IC-MI IC-BIN T-LESS RU-APC TUD-L Average Time (s)
® 1. Vidal-18 87.83 59.31 95.33 96.50 66.51 36.52 80.17 74.60 4.7
® 2. Drost-10-edge 79.13 54.95 94.00 92.00 67.50 200 AT 87.33 T1LT8 21.5
® 3. Drost-10 82.00 55.36 94.33 87.00 56.81 22.25 78.67 68.06 2.3
® 4. Hodan-15 87.10 51.42 95.33 90.50 63.18 37.61 45.50 67.23 13.5
® 5. Brachmann-16 75-83 52.04 (3:88 56.50 17.84 24:35 88.67 55.44 4.4
® 6. Hodan-15-nopso 69.83 34.39 84.67 76.00 62.70 32.39 27.83 55.40 12.3
® 7. Buch-17-ppfh 56.60 36.96 95.00 75.00 25.10 20.80 68.67 54.02 14.2
® 8. Kehl-16 58.20 33191 65.00 44.00 24.60 25.58 7.50 36.97 1.8
® 9. Buch-17-si 33.33 20.35 67.33 59.00 13.34 2312 41.17 36.81 15.9
® 10. Brachmann-14 67.60 41.52 78.67 24.00 0.25 30.22 0.00 34.61 1.4
® 11. Buch-17-ecsad 13.27 9.62 40.67 59.00 7:16 6.59 24.00 22.90 5.9
® 12. Buch-17-shot 5.97 1.45 43.00 38.50 3.83 0.07 16.67 15.64 6.7
® 13. Tejani-14 12.10 4.50 36.33 10.00 0.13 1.52 0.00 9.23 1.4
® 14. Buch-16-ppfh 8.13 2.28 20.00 2.50 7.81 8.99 0.67 %20 47.1
® 15. Buch-16-ecsad 3.70 0.97 3.67 4.00 1.24 2.90 0.17 2.38 39.1

T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. G. Buch, D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J.
Matas, C. Rother, BOP: Benchmark for 6D Object Pose Estimation, European Conference on Computer Vision (ECCV) 2018, Munich.

Robotics Il — Sensors and Perception| Chapter 5

H2T



76

BOP: Benchmark for 6D Object Pose Estimation

® https://bop.felk.cvut.cz/home/

@ “The goal of BOP is to capture

the state of the art in estimating

the 6D pose, i.e. 3D translation
and 3D rotation, of rigid objects
from RGB/RGB-D images. An
accurate, fast, robust, scalable
and easy-to-train method that
solves this task will have a big
impact in application fields such
as robotics or augmented
reality.”
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BOP: Benchmark for 6D Object Pose Estimation

HOME CHALLENGES DATASETS LEADERBOARDS SUBMIT RESULTS Sign il

* 01/May/2022 - BOP Challenge 2022 has been opened!

* 11/Sep/2021 - HOPE, a new dataset from NVIDIA for pose estimation of household objects, has been released.

* 15/Sep/2020 - An analysis of the BOP Challenge 2020 results is now available in this ECCVW 2020 paper.

* 23/Aug/2020 - The winners of the BOP Challenge 2020 have been announced at the R6D workshop at ECCV 2020.
* 09/Jun/2020 - The complete HomebrewedDB dataset is now available in the BOP format.

* 05/Jun/2020 - BOP Challenge 2020 has been opened!

* 27/Jan/2020 - Submissions to the BOP Challenge 2019 have been re-evaluated.

* 28/0ct/2019 - The winners of the BOP Challenge 2019 have been announced.

* 14/Aug/2019 - The YCB-Video dataset is now available in the BOP format.

Join the BOP Google group to stay up to date.

Introduction

The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 30 rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust,
scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.

3D model Synthetic/real training images

| - _b-
4 1 Estimated 6D pose
Test RGB/RGB-D image of object 0

H2T

Training data for object o
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Learning on Unordered Point Sets A\‘(IT

Karlsruher Institut fur Technologie

@ The output of neural network (Dense, Convolution, Recurrent ...) is not
invariant to the order of the input data

® Problem: How to order a point set in R™?

Vinyals, O., Bengio, S., Kudlur, M., & Brain, G. Order Matters: Sequence to sequence for sets; https://arxiv.org/abs/1511.06391
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Pose Estimation with Neural Networks A\‘(IT

Karlsruher Institut far Technologie

B Neural Networks can solve many intractable problems of classical methods
by approximating them
® Object detection and classification can provide prior information

® Pixel-level segmentation and bounding box prediction sets constraints on
position and orientation of the object

® 2D-3D correspondences can be learned

B Recent advances in geometric deep learning allow for deep learning on non-
image input data

® Volumetric models (VoxNet)
® Point-based methods (PointNet)
® Graph-based models (GraphCNN)

&>
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Example: DenseFusion A\‘(IT

Karlsruher Institut fur Technologie

® Mask RCNN and PointNet for 6D pose estimation

® Input: Segmented RGB-D image (mask of pixels that belong to the object)
® Masked depth image is fed to PointNet
® Masked RGB image is fed to a Mask RCNN

B Pixel-wise dense features (depth & RGB) are fused in image coordinates to calculate
global features

® 6D Pose is calculated using global and local features

color

NI | OO O O s

\ \ ; | Y \\ . embeddings [ pixel-wise dense fusion ]
f i . (Xpy;) (X Yn)
Ly~ RGB-D object ~ ) -t
- | segmentation . ‘ ‘ ]
‘ : =] o —
—
s g 7, matching aEs s
‘\,‘\—* DenseFusion f point
- e
\ 6D pose estimation 3 ‘ | |
oy A
geometry 7\\\\ ’//
= embeddings /‘ \\,‘
" per-pixel
b R - X ature —
4 prediction per pixel e
[ pixel (x,y) i=1..N -
— "
F rotation
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. argmax(c) S translation t,
% confidence ¢,
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